Triangular System of Higher Order Singular Fractional Differential Equations
نویسندگان
چکیده
In this paper, we introduce a high dimensional system of singular fractional differential equations. Using Schauder fixed point theorem, prove an existence result. We also investigate the uniqueness solution using Banach contraction principle. Moreover, study Ulam-Hyers stability and generalized-Ulam-Hyers solutions. Some illustrative examples are presented.
منابع مشابه
On boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملEigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations
and Applied Analysis 3 Lemma 2.1 see 8, 9 . 1 If x ∈ L1 0, 1 , ρ > σ > 0, and n ∈ N, then IIx t I x t , DtIx t Iρ−σx t , 2.4 DtIx t x t , d dtn Dtx t Dt x t . 2.5 2 If ν > 0, σ > 0, then Dttσ−1 Γ σ Γ σ − ν t σ−ν−1. 2.6 Lemma 2.2 see 8 . Assume that x ∈ L1 0, 1 and μ > 0. Then IDtx t x t c1tμ−1 c2tμ−2 · · · cntμ−n, 2.7 where ci ∈ R i 1, 2, . . . , n , n is the smallest integer greater than or eq...
متن کاملExistence and uniqueness of solutions for a singular system of higher-order nonlinear fractional differential equations with integral boundary conditions∗
Abstract. In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green’s function, a nonlinear alternative of Leray–Schauder-type, Guo–Krasnoselskii’s fixed point theorem in a cone and the Banach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kragujevac journal of mathematics
سال: 2021
ISSN: ['2406-3045', '1450-9628']
DOI: https://doi.org/10.46793/kgjmat2101.081t